Distributed 2-Vertex Connectivity Test of Graphs Using Local Knowledge

نویسندگان

  • Brahim Hamid
  • Bertrand Le Saëc
  • Mohamed Mosbah
چکیده

The vertex connectivity of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. This work is devoted to the problem of vertex connectivity test of graphs in a distributed environment based on a general and a constructive approach. The contribution of this paper is threefold. First, using a pre-constructed spanning tree of the considered graph, we present a protocol to test whether a given graph is 2-connected using only local knowledge. Second, we present an encoding of this protocol using graph relabeling systems. The last contribution is the implementation of this protocol in the message passing model. For a given graph G, where M is the number of its edges, N the number of its nodes and Δ is its degree, our algorithms need the following requirements: The first one uses O(Δ×N) steps and O(Δ×logΔ) bits per node. The second one uses O(Δ×N) messages, O(N) time and O(Δ × logΔ) bits per node. Furthermore, the studied network is semi-anonymous: Only the root of the pre-constructed spanning tree needs to be identified. Keywords—Distributed computing, fault-tolerance, graph relabeling systems, local computations, local knowledge, message passing system, networks, vertex connectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The augmented Zagreb index, vertex connectivity and matching number of graphs

Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.

متن کامل

Eccentric Connectivity Index of Some Dendrimer Graphs

The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.

متن کامل

Centric connectivity index by shell matrices

Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topologi...

متن کامل

Minimum Tenacity of Toroidal graphs

The tenacity of a graph G, T(G), is dened by T(G) = min{[|S|+τ(G-S)]/[ω(G-S)]}, where the minimum is taken over all vertex cutsets S of G. We dene τ(G - S) to be the number of the vertices in the largest component of the graph G - S, and ω(G - S) be the number of components of G - S.In this paper a lower bound for the tenacity T(G) of a graph with genus γ(G) is obtained using the graph's connec...

متن کامل

Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity

Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007